Editorial: Coronaviruses: Facts, Myths and Hypotheses.

Michele Carbone, Joshua B. Green, Enrico M. Bucci, and John J Lednicky.

To appear in: Journal of Thoracic Oncology

Please cite this article as: Carbone M, Green JB, Bucci EM, Lednicky JJ. Coronaviruses: Facts, Myths and Hypotheses. Journal of Thoracic Oncology (2020), in press.

This is a PDF file of an article accepted for publication, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 International Association for the Study of Lung Cancer.
Editorial: Coronaviruses: Facts, Myths and Hypotheses.

Michele Carbone¹* M.D., Ph.D., Joshua B. Green², M.D., Enrico M. Bucci³, Ph.D., and John J. Lednicky⁴.

1. Thoracic Oncology, University of Hawaii Cancer Center and Department of Pathology JABSOM Medical School Hawaii, Honolulu HI USA
2. Lt Governor, State of Hawaii, USA
3. Sbarro Institute for Cancer research and Molecular Medicine, Temple University, Philadelphia PA USA
4. Department of Environmental and Global Health, College of Public Health, University of Florida, USA

*Correspondence:

Michele Carbone, MD, PhD

University of Hawai'i Cancer Center
701 Ilalo St.
4R Room 437
Honolulu, HI 96813
UNITED STATES
+1-808-440-4596
mcarbone@cc.hawaii.edu

DISCLOSURE: The Authors do not have any conflict of interest to declare related to topics discussed in this article. For full disclosure, the co-authors report the following funding sources: M.C. report grants from the National Institutes of Health, National Cancer Institute, the US Department of Defense, and the UH Foundation through donations to support research on “Pathogenesis of Malignant Mesothelioma” from Honeywell International Inc, Riviera United-4-a Cure, and the Maurice and Joanna Sullivan Family Foundation. M.C. has a patent issued for BAP1. M.C has a patent issued for “Using Anti-HMGB1 Monoclonal Antibody or other HMGB1 Antibodies as a Novel Mesothelioma Therapeutic Strategy,” and a patent issued for “HMGB1 As a Biomarker for Asbestos Exposure and Mesothelioma Early Detection”. M.C. is a board-certified pathologist who provides consultation for mesothelioma expertise and diagnosis.
In this issue of JTO, Tian, et al., provide the first description of early pathology of coronavirus disease-2019 (COVID-19). As of today, Feb 26, 2020, there have been over 78,000 confirmed cases, and over 2,500 deaths in China, based on the official figure by the National Health Commission of China. Infections are rapidly spreading in the US, Europe, South Korea, Iran and other countries. Coronavirus disease-2019 has already caused havoc to travel and global markets and has the potential to become a devastating disease in China and globally. It is important to realize, however, that since we are in the early stages of this outbreak, many data are incomplete and some are unreliable.

In this early stage of the outbreak, the rate of positivity outside China is influenced mainly by two factors: 1) whether the city or country has a large Chinese community or is visited by large number of Chinese tourists, and 2) by the number of tests conducted. For example, among European countries, Italy has performed a high number of tests for SARS-CoV-2 which is the virus that causes COVID-19: as of February 26, of 9,587 individuals tested, 400 were positive for SARS-CoV-2, and are currently being retested to verify the results. Not surprisingly, Italy has a much higher number of positive cases than France, which tested less than 500/18 positive, Germany which tested a few hundred/19 positive, etc. Even within Italy there are major discrepancies: the press reported that infections are almost exclusively occurring in the regions of Lombardia and Veneto. A review of the data revealed that as of Feb 26, 2020, Lombardia had tested 3,208 individuals mostly with flu-like and upper respiratory symptoms and 258 were positive; Veneto had tested 4,900 and 71 were positive. In contrast, the Center/South of Italy, regions of Abruzzo, Basilicata, Calabria, Campania, Molise and Sardinia, together, had tested a total of 27 people: none was positive. In other words, the more tests are performed, the more individuals are found positive for SARS CoV-2; and obviously, unless people are tested, SARS CoV-2 infections cannot be identified (Figure 1). It is clear from these numbers that it makes little sense to restrict travel to those from Lombardia and Veneto—who now are prohibited from entering several foreign countries—while allowing Italians from other regions, where only few or no tests were performed, to travel. The same argument applies to other European countries where testing has been minimal, and applies also to the US, where, as of February, 25th only 426 patients had been tested. For example, Hawaii, a state with a large Chinese community and large numbers of tourists from China, is presumed to be free of SARS-CoV-2 infections. The problem is that nobody has been tested as of February 26 in Hawaii! We can predict that in the coming weeks we will have to rethink much of what we heard about the spread of this disease.

Another problem is that the diagnosis for SARS CoV-2 infection is currently largely based on RT-PCR, and unfortunately it is unreliable because of a high rate of false negative and some false positive results especially in places that perform this test in large numbers, as for example during the Hubei crisis. In that context, the sensitivity of the PCR assay has been found largely inferior to that of a chest CT.

The main reason for false negative results has been traced to faulty science in the design of some PCR kits, connected to their production and standardization under pressure from the burgeoning
epidemics. Faulty PCR tests have been connected to severe under-detection rates in China4 and were identified also in the US.5

Another reason for false negatives is that the swab used to collect the sample needs to reach the deeper pharynx, which is a delicate procedure: when many patients are in line for a test and there is pressure to hurry up, it is easy to miss. PCR-negative patients are sent home and they infect more people. False positives are also common in these circumstances, because tests are performed in hospitals with a fairly large number of patients, thus in environments with high viral load: PCR being a sensitive test, it can easily produce false positive results. However, if the test is performed with a correct set of primers, and in “ideal” conditions, which means not in a hurry, not in an environment where there are many carriers, then it is probably reliable.6

ELISA assays, which since last week became available in China and elsewhere, are much more reliable and sensitive7 and should hopefully soon replace RT-PCR testing. Fortunately, about 80\% of infected patients require no specific treatment, the disease for them is mild, like a common flu. Treatment is at the moment symptomatic, there is no scientific evidence that any specific antiviral drug works better than others – albeit several clinical trials show some promising results for a few compounds. By far, most people who develop a serious disease are over 70 years old. Among them, cancer patients are at particularly high risk because they are immune-depressed. Cancer patients are also more likely to develop a more aggressive disease and die of it.8

Why do patients die? Prior to this report, there had not been any data describing the early anatomic pathology lesions of this disease. This dearth of pathology description made it difficult to understand the pathogenesis of COVID-19. Therefore, for prevention, infection control, and treatment, we rely on current knowledge of severe acute respiratory syndrome (SARS), which is caused by SARS-associated coronavirus (SARS-CoV). Justification for these practices stems from the genetic similarity of SARS CoV to SARS-CoV-2, the virus that causes COVID-19, and to similarities in the clinical presentations of the illnesses caused by these viruses.

When did COVID-19 emerge? The emergence of a coronavirus not previously detected in humans was first reported in December 2019 in Wuhan, Hubei Province in China. By the time the Chinese government decided to forbid residents to travel, about 5 million of the 14 million residents had already left Wuhan because of the Chinese New Year’ holidays, and because of a last minute wave of “exodus” which occurred as citizens fled Wuhan just before the “lockdown” of the city became effective at 10 am, 23 January, 2020. According to official reports from the Chinese government, and to peer-reviewed manuscript published in the past few days,9 the disease first manifested in early December when a small number of cases started to occur. The disease was characterized by fever, dry cough and dyspnea. Tests for all known respiratory tract pathogens were negative.
Since then, we have learned that this disease causes death in a significant number of patients, particularly the elderly and in cancer patients. In China the case fatality rate (CFR: ratio of deaths for the total number of people diagnosed with this disease) has been between 2-3%, although it has been as high as 4.6% in Wuhan, the epicenter of the outbreak. The cause of death among infected patients is respiratory failure. Patients show greatly impaired respiratory function, and they “supposedly” suffer alveolar damage, as even assisted oxygenation and intubation does not save their lives. However, until the publication of this report in JTO, we did not know the underlying pathological changes responsible for the respiratory failure in these patients. Anatomic pathology studies of lung biopsy material have not been performed because they are not necessary to make the diagnosis. Autopsies were prohibited in China for fear that those performing the autopsy could become infected. Only recently the Chinese government allowed autopsies to be performed in P3-biosafety level facilities - P3-suites for autopsy are not available in Wuhan. The first report of a postmortem biopsy in a single patient who died of COVID-19 was published a few days ago, after the paper by Tian et al. had been submitted to JTO. These two papers allow us to see how the disease develops and progresses.

The paper by Tian et al. was a result of an international collaboration between the senior author, Dr. Xiao, a Professor at the University of Chicago, US, who also works several months of the year at Wuhan University where he Chairs the department of Pathology, and his colleagues in Wuhan. Dr. Xiao was in Wuhan when the city found itself at the center of an epidemic, and the hospitals were suddenly hit with an overwhelming number of patients, many of them severely ill: healthcare authorities and workers scrambled to offer as much care as possible to those who needed it, several of them got infected and died of COVID-19. To overcome the problem that it was prohibited to conduct autopsies, biopsies were not taken, and therefore nothing was known about the anatomical pathology changes that occurred during this disease, Dr. Xiao and collaborators hypothesized that the infectious rate was so high that some of the patients who were hospitalized for other diseases likely had a superimposed SARS CoV-2 infection. By reviewing the clinical records of patients hospitalized there during the months of December 2019 and January 2020, the authors identified two patients who had undergone lobectomies to remove early stage lung cancers with ground-glass opacities in their lungs, a characteristic radiological finding in COVID-19 infected patients. In addition, RT-PCR tests were performed for these patients which verified the infection. The pathologic lesions identified in these patients and described in their report, represent the early pathological changes, as they were detected before the patients developed any clinical symptoms related to COVID-19. Both patients eventually became severely ill and one of them died of respiratory failure.

To a certain degree, observing early phase pathologic changes is more relevant than findings from autopsies, because the latter only offer a “glimpse” of the picture in the very end of the disease process. Therefore, this report showing the pathology in the lungs of two pre-symptomatic patients, allows us, for the first time, to see the pathology of this disease at its earliest stages and understand the pathophysiology of SARS CoV-2 infection.
In these pre-symptomatic SARS CoV-2-infected lungs, Xiao and colleagues observed edema with proteinaceous exudates.\(^1\) The high quality figures show patchy changes of fibrin plugs mixed with macrophages and other inflammatory cells. In one of the two cases, abundant intra-alveolar pulmonary macrophages are present. The alveolar walls or septa are expanded by proliferating fibroblasts with parallel type II pneumocyte hyperplasia. There is no significant neutrophilic exudation or infiltration, in keeping with a viral infection. There are no hyaline membrane formations at this early stage—which were instead found at autopsy\(^10\). However, fibroblastic plugs have formed albeit focally, even in this early phase of the disease. These findings indicate that there is progressive consolidation of the lung, which is ultimately the cause of respiratory failure and death. Lung consolidation is not caused by the accumulation of granulocytes and fibrin, but rather by intra-alveolar organization and fibrosis. Therefore, since the respiratory surface of the lung is obliterated, these patients can no longer respond to intubation and oxygen therapy: this is why they die. From this important report\(^1\), we learn that the virus can establish infection in the lungs where it produces tissue injury well before producing symptoms, including dry cough and fever that occur later on. At this early stage, the only clue of SARS CoV-2 infection is imaging showing ground glass opacities in the periphery of the lung. These imaging findings are of particular relevance to identify infected individuals, in light of the evidence for viral spreading by asymptomatic patients including by individuals which may test PCR-negative for SARS CoV-2 in the upper respiratory tract\(^11\). Therefore, presently, any patient with round glass opacities in the lungs should undergo SARS CoV-2 testing.

The lesions usually start in the peripheral lung zones close to the pleura, as single or multifocal ground glass opacities. Only when the lesions become more intense or expand do patients develop symptoms. Often, the first symptom is a dry cough. Most patients recover. However, some experience disease progression and their lungs contain large areas of consolidations, at which point there is severe loss of function leading to respiratory failure.

This important work helps us understand the pathogenesis of COVID-19 and to be better prepared to identify potentially infected patients. This work is the result of an international collaboration among a highly trained US pathologist, Dr. Xiao, who had studied hantavirus infections, West Nile virus disease for many years, and who is presently a senior diagnostic pathologist at the University of Chicago. Dr. Xiao’s experience allowed him to coordinate a team of pathologists and clinicians to circumvent the problem that autopsies were not allowed, biopsies were not necessary, and yet the world needed to know more about the pathology of this disease to be prepared to face this epidemic. In the end the outcome of the study will benefit medicine and patients throughout the world, underscoring the value of team-work and international collaborations in medical research.

Figure Legend. As of February 26, the number of cases detected in different Italian regions is proportional to the number of PCR tests performed. By sampling people in direct contact with
infected individuals, 1 in 12 tested positive. The Veneto region is an outlier, possibly due to testing on a larger population, not restricted to direct contacts of infected individuals. As the number of tests will increase, so will the slope of the represented line, due to the expected decrease of the percentage of positive tests. Note that presently, due to the relatively limited data, the curve’s fit is strongly dependent on the position of a few points.
References

As of February, 26th, the number of cases detected in those Italian regions where the contagion expanded is proportional to the number of PCR tests performed. By sampling people in direct contact with infected individuals, 1 in 12 tested positive. The Veneto region is an outlier, possibly due to testing on a larger population, not restricted to direct contacts of infected individuals. As the number of tests will increase, so will the slope of the represented line, due to the expected decrease of the percentage of positive tests. Please also consider that, as of now, the fitting is strongly dependent by the position of few points.