

IASLC 2020 World Conference on Lung Cancer Singapore: Highlights

February 22, 2021

INTERNATIONAL
ASSOCIATION
FOR THE STUDY
OF LUNG CANCER
Conquering Thoracic Cancers Worldwide

CME
ACCREDITED

Simultaneous WCLC 2020 publication by Baohui Han:

[https://www.jto.org/article/S1556-0864\(20\)31101-1/fulltext](https://www.jto.org/article/S1556-0864(20)31101-1/fulltext)

INTERNATIONAL
ASSOCIATION
FOR THE STUDY
OF LUNG CANCER
Conquering Thoracic Cancers Worldwide

Disclosures

Daniel SW Tan, BSc, MBBS, PhD

- › Advisory role and consultant: Novartis, Bayer, Boehringer Ingelheim, Celgene, Astra Zeneca, Eli-lily, Loxo
- › Travel and honorarium: Merck, Pfizer, Novartis, Boehringer Ingelheim, Roche, Takeda
- › Research funding: Novartis, Astra Zeneca, GlaxoSmithKline, Bayer, Pfizer

Yi-long Wu, MD

- › Honoraria: AstraZeneca, Boehringer Ingelheim, BMS, Eli Lilly, Hengrui, MSD, Pfizer, Roche and Sanofi;
- › Consulting or advisory role: AstraZeneca, Boehringer Ingelheim, Novartis, Merck, MSD, Roche and Takeda
- › Research funding to the institution: AstraZeneca, Boehringer Ingelheim, BMS, Hengrui, Pfizer and Roche

Ross Soo, MBBS, PhD, FRACP

- › Advisory Board: Amgen, Astra-Zeneca, Bayer, BMS, Boehringer Ingelheim, Lilly, Merck, Novartis, Pfizer, Roche, Taiho, Takeda, Yuhan
- › Research grant: Astra-Zeneca, Boehringer Ingelheim

All other planners, reviewers and staff reported no relevant financial relationships.

All relevant financial relationships have been mitigated

Selected Abstracts from Day 2

Daniel SW Tan, BSc, MBBS, PhD

Associate Professor, Duke-NUS Medical School

Senior Consultant, Division of Medical Oncology

National Cancer Centre Singapore

IASLC

INTERNATIONAL
ASSOCIATION
FOR THE STUDY
OF LUNG CANCER

Conquering Thoracic Cancers Worldwide

CME
ACCREDITED

Overview of abstracts

- › Biomarkers for checkpoint inhibitors
- › Improving on outcomes for stage III NSCLC
- › Antibody drug conjugates and novel targeted therapies
- › Adjuvant therapy post surgery for EGFR mutated NSCLC

EMPOWER-Lung 1 Study Design

Key Eligibility Criteria

- Treatment-naïve advanced NSCLC
- PD-L1 $\geq 50\%$
- No EGFR, ALK, or ROS1 mutations
- ECOG PS 0 or 1
- Treated, clinically stable CNS metastases and controlled hepatitis B or C or HIV were allowed

Stratification Factors:

- Histology (squamous vs non-squamous)
- Region (Europe, Asia, or ROW)

N=710

Endpoints:

- Primary: OS and PFS
- Secondary: ORR (key), DOR, HRQoL, and safety

ALK, anaplastic lymphoma kinase; CNS, central nervous system; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR, epidermal growth factor receptor; HIV, human immunodeficiency virus; HRQoL, health-related quality of life; IV, intravenous; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD, progressive disease; PD-L1, programmed cell death-ligand 1; PFS, progression-free survival; Q3W, every 3 weeks; R, randomized; ROS1, c-ros oncogene 1; ROW, rest of the world.

Response to cemiplimab by PDL1 status tiers

PD-L1 Expression Levels Correlate with Objective Response Rate (N=475)

PD-L1 Expression Levels Correlate with OS and PFS (N=475)

CI, confidence interval; ORR, objective response rate; PD-L1, programmed cell death-ligand 1.

Data cut-off date: March 1, 2020

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Data cut-off date: March 1, 2020

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Lung MAP Studies: Previously treated, IO-naïve, stage IV Sq NSCLC

S1400I: Randomized Phase III study: Nivolumab + Ipilimumab vs Nivolumab

Gettinger S. et al
(ASCO 2019, WCLC 2019)

S1400A: Single-arm phase II study: Durvalumab

Borghaei H et al. Clin Lung Cancer, in press

Tumor Mutational Burden as a Continuous Variable

TMB by Value (per 10-unit difference)

Total pts: 252 on S1400I
68 on S1400A

Overall Survival: higher TMB; HR: 0.80 (95% CI: 0.67;0.94), $p=0.008$

Progression Free Survival: HR: 0.80 (95% CI: 0.69;0.93), $p=0.004$

**HIGHER TMB WAS
SIGNIFICANTLY ASSOCIATED
WITH IMPROVED OS AND PFS.**

The relative risk of death comparing OS between patients with TMB levels above versus below the thresholds

Association between TMB (continuous) and different PD-L1 expression groups : S1400I

HRs ≤ 1.0 in all subgroups of PD-L1 expression.

KEYNOTE-799 (NCT03631784)

Primary Objectives

- ORR per RECIST version 1.1 by BICR
- Percentage of patients who develop grade ≥ 3 pneumonitis

Secondary Objectives

- PFS, OS, safety

Statistical Analysis Details

- Efficacy assessed in all patients with first study dose before or on October 31, 2019 (PE population)
- Safety assessed in all patients in the as-treated population

BICR, blinded, independent central review; PE, primary efficacy.

^a60 Gy in 30 daily 2-Gy fractions. ^bTreatment will continue until cycle 17 is completed or until documented disease progression, unacceptable AEs, intercurrent illness that prevents further administration of treatment, or study withdrawal. Pembrolizumab therapy will be discontinued permanently in patients who develop grade ≥ 3 or recurrent grade 2 pneumonitis.

CONQUERING THORACIC CANCERS WORLDWIDE

ORR and Duration of Response By BICR per RECIST v1.1 (Primary Efficacy Population)

	Cohort A ^a n = 112	Cohort B ^b n = 61		
PE Population				
ORR, n (%) [95% CI]	n = 112	n = 61		
CR	78 (69.6) [60.2–78.0]	43 (70.5) [57.4–81.5]		
PR	4 (3.6)	3 (4.9)		
SD, n (%)	74 (66.1)	40 (65.6)		
PD, n (%)	21 (18.8)	12 (19.7)		
Not evaluable, n (%)	1 (0.9)	0		
No assessment, n (%)	2 (1.8)	0		
DOR, median (range), ^c mo	NR (1.4+ to 16.1+)	NR (2.0+ to 15.9+)		
DOR ≥12 mo, ^c n (%)	31 (82.2)	5 (72.1)		
PD-L1 Status				
TPS <1% (n = 21)	TPS ≥1% (n = 66)	TPS <1% (n = 17)	TPS ≥1% (n = 26)	
ORR, n (%)	14 (66.7)	49 (74.2)	11 (64.7)	18 (69.2)
Histology				
Nonsquamous (n = 39)	Squamous (n = 73)	Nonsquamous (n = 61)	Squamous (n = 0)	
ORR, n (%)	27 (69.2)	51 (69.9)	43 (70.5)	NA

CI, confidence interval; DOR, duration of response; NR, not reached.

^aSquamous and nonsquamous. ^bNonsquamous only. ^cKaplan-Meier estimate. "+" indicates there is no progressive disease by the time of last disease assessment.

Data cutoff date: July 30, 2020.

Progression-Free Survival By BICR per RECIST v1.1 (Primary Efficacy Population)

^aSquamous and nonsquamous. ^bNonsquamous only.

Data cutoff date: July 30, 2020.

Incidence of Grade ≥ 3 Pneumonitis/Safety

Per NCI-CTCAE Version 4.0 (All-Treated Patients)

	Cohort A ^a (n = 112)	Cohort B ^b (n = 101)
Grade ≥ 3 pneumonitis (all cause),^{c,d} n (%) [95% CI]	9 (8.0) [3.7–14.7]	8 (7.9) [3.5–15.0]
Treatment-related AEs, n (%)	105 (93.8)	96 (95.0)
Grades 3–5	72 (64.3)	47 (46.5)
Led to death	4 ^c (3.6)	1 (1.0)
Led to discontinuation of any treatment component	38 (33.9)	16 (15.8)
Discontinued pembrolizumab	27 (24.1)	15 (14.9)
Discontinued radiotherapy	2 (1.8)	0
Discontinued any chemotherapy	18 (16.1)	3 (3.0)
Immune-mediated AEs and infusion reactions, n (%)	59 (52.7)	36 (35.6)
Grades 3–5	18 (16.1)	10 (9.9)
Led to death ^d	4 (3.6)	1 (1.0)

^aSquamous and nonsquamous. ^bNonsquamous only. ^cIncludes immune-mediated AE of "pneumonitis" and the MedDRA preferred term of "radiation pneumonitis". ^dIncludes 4 patients (3.6%) with grade 5 pneumonitis in cohort A and 1 patient (1.0%) with grade 5 interstitial lung disease in cohort B. These events were classified as both treatment-related events and under immune-mediated AEs and infusion reactions.

Data cutoff date: July 30, 2020.

Role of PET-directed adaptation of RT

RTOG1106 Study Schema

*Randomization: 1:2 for control and experimental arms, stratified by GTV (200 cc) and MLD (14 Gy)

Results-5: Thoracic Adverse Events

	Standard RT (n=42)	Adaptive RT (n=80)
Any Grade 2+ Adverse Event	37 (88.1%)	78 (97.5%)
Grade 2+ Esophagitis	13 (31.0%)	34 (42.5%)
Grade 2+ Respiratory, Thoracic, and Mediastinal Disorders	19 (45.2%)	35 (43.8%)
Grade 2+ Cardiac Disorders	2 (4.8%)	4 (5.0%)

*Adverse events graded per CTCAE v4.0 criteria and reported as possibly, probably, or definitely related to treatment

Results-6: Local-Regional Control (Central Review)

HER3 and Trop2 Antibody drug conjugates

Activity according to BICR evaluation (efficacy-evaluable population) N = 56^a

Confirmed BOR, n/N (%)	
CR	1/56 (2%)
PR	13/56 (23%)
SD	25/56 (45%)
PD	9/56 (16%)
NE	8/56 (14%)
Confirmed ORR, % (n/N; 95% CI)	25% (14/56; 14.4-38.4)
DCR, % (n/N; 95% CI)	70% (39/56; 55.9-81.2)
Median TTR, months (range)	2.0 (1.2-2.8)
Median DOR, months (range)	6.9 (3.0-7.0)

- TEAEs were predominantly nonhematologic
- Rates of grade ≥3 stomatitis and mucosal inflammation were higher with 8 mg/kg vs 4 and 6 mg/kg^c
- 14 out of 175 patients (8%) had treatment-related ILD as adjudicated by an independent committee^d
 - 4 mg/kg: 1 patient (grade 3)
 - 6 mg/kg: 1 patient (grade 2)
 - 8 mg/kg: 12 patients (8 patients grade 1-2; 1 patient grade 3; 3 patients grade 5)

Amivantamab: EGFR-MET bispecific antibody

Yun J et al, CCR 2020

CHRYSLIS
EGFR Ex20ins NSCLC (n=81)
Phase I

Dose Escalation Cohorts
140–1750 mg
Advanced NSCLC

RP2D
1050 mg (<80 kg)
1400 mg (≥80 kg)
C1 QW, C2+ Q2W

Dose Expansion Cohort D
EGFR Exon20ins

Post-platinum Exon20ins
Treated at RP2D
(N=114; Safety Population)

Post-platinum Exon20ins with ≥3
Disease Assessments at Clinical Cut-off^a
(n=81; Efficacy Population)

Amivantamab in post-platinum Ex20ins NSCLC

Helical Region (n=1)
ORR=100%; CBR=100%

Near Loop (n=54)
ORR=41%; CBR=70%

Far Loop (n=8)
ORR=25%; CBR=75%

Not Detected by ctDNA (n=18)
ORR=39%; CBR=83%

25 distinct Exon20ins variants identified by NGS of ctDNA (Guardant360[®]) from 63 evaluable patient samples

Mobocertinib results in a reduction in target lesion volume in post-platinum treated *EGFR* Ex20ins patients

94/114 (82%) had a reduction from baseline in sum of target lesion diameter

Post-platinum treated cohort
N = 114

Study	N
Phase 1	6
Phase 2 Expansion	22
EXCLAIM	86

*ORR in EXCLAIM cohort: 23%

Side effect profile of Mobocertinib

All-Grade TRAEs Observed in $\geq 20\%$ of Patients

PPP Cohort (N=114)

EXCLAIM Cohort (N=96)

Grades 3/4 TRAEs in $\geq 5\%$ of Patients, n (%)

PPP Cohort (N=114)

Diarrhea	25 (22)
Anemia	6 (5)
Dyspnea	6 (5)

Grades 3/4 TRAEs in $\geq 5\%$ of Patients, n (%)

EXCLAIM Cohort (N=96)

Diarrhea

15 (16)

ADAURA: Impact of adjuvant chemotherapy and QOL

DFS in patients with and without adjuvant chemotherapy (overall population)

Wu, Tsuboi et al. N Engl J Med 2020;383:1711–23. ADAURA data cut-off: January 17, 2020.

Tick marks indicate censored data. NC, not calculable; NR, not reached.

DFS in patients with and without adjuvant chemotherapy, by disease stage

Performed using a Cox proportional hazards model including treatment, subgroup and a treatment-by-subgroup interaction term.

*Subgroup categories with less than 20 events, such as patients with stage IB disease with adjuvant chemotherapy, were excluded from the analysis. A HR of less than 1 favors osimertinib.

ADAURA data cut-off: January 17, 2020.

Adjusted mean change in SF-36 physical (PCS) and mental (MCS) component summary T-scores

- In disease-free patients receiving osimertinib, SF-36 PCS and MCS were maintained from baseline to week 96,* with no clinically meaningful differences observed compared with the placebo arm

EGFR M+DFS knowledge bank (n=389)

IASLC 2020 World Conference on Lung Cancer Singapore: Highlights from Day 3

Yi-Long Wu

Tenured Professor of Guangdong Lung Cancer Institute,
Guangdong Provincial People's Hospital
& Guangdong Academy of Medical Sciences
Guangzhou, China

INTERNATIONAL
ASSOCIATION
FOR THE STUDY
OF LUNG CANCER
Conquering Thoracic Cancers Worldwide

Topics

Lung Cancer Screen

Perioperative adjuvant treatment

Target KRAS

Immunotherapy combo for advanced
NASCLC

Immunotherapy for mesothelioma

PLATFORM trial

National Lung Cancer Screening Program in Taiwan: The TALENT Study

**Pan-Chyr Yang MD, PhD
On Behalf of TALENT Study Group**

**National Taiwan University
Institute of Biomedical Sciences
Center of Genomics, Academia Sinica**

Taiwan Lung Cancer Screening in Never Smoker Trial (TALENT)

From Feb 2015 to July 2019, 17 medical centres participated

- Key inclusion criteria

- 55-75 y/o^a
- Never smoking or SI < 10 PY and had quit > 15 yrs
- Having one of the following risks
 - family history of lung cancer (\leq 3-degree)
 - environmental tobacco smoking history
 - chronic lung disease (TB, COPD)
 - cooking index^b \geq 110
 - cooking without using ventilation
- Negative CXR

- Data cutoff: September 30, 2020
- 13,207 subjects screened, 12,011 enrolled
- 6009 (50%) with family history

^a Subjects with lung cancer FH: >50 yrs or > the age at diagnosis of the youngest lung cancer case in the family

^b 2/7 x days with cooking by pan-frying, stir-frying, or deep-frying in 1 week (maximum=21) x Yrs with cooking

What are the discovery from TALENT study?

More early cases with lung cancer were discovered

- T0 lung cancer detection rate: $313/12,011 = 2.6\%$, NLST: 1.1%, NELSON: 0.9%
- Invasive lung cancer: $255/12,011 = 2.1\%$. Multiple primary lung cancer: **17.9%**
- LDCT positive: 17.4% (GGO > 5mm, S/PS > 6mm)[#]. Invasive procedures: 3.4%
- Lung cancer confirmed: **96.5% stage 0-1**. LDCT features: GGO 47%, S 19%, PS 34%
- Prevalence of lung cancer w/ or w/o family history: **3.2% vs 2.0%** ($p < 0.001$)

Histologic Diagnosis	(n)
Adenocarcinoma in situ (AIS)	58
Minimally invasive adenocarcinoma (MIA)	71
Invasive adenocarcinoma (INAD)	183
Adenosquamous carcinoma	1
Total	313

Stage 0	58
Stage IA	218
Stage IB	26
Stage IIA	0
Stage IIB	3
Stage IIIA	2
Stage IIIB	1
Stage IV	5

What are the discovery from TALENT study?

High risk factor for non-smoker lung cancer: Family history

	Absence		Presence		R.R. (95% CI)	p
	n	%	n	%		
Lung cancer family history						< 0.001
	Risk of cancer for male and female relatives.					
			Case relatives	Control relatives	Adjusted OR ^a (95% CI)	p
			N (%) with cancer	N (%) with cancer		
First-degree family						< 0.001
	First-degree male relatives					
	Father					
	Any cancer	No	241 (75.79)	423 (83.1)	1.54 (1.08-2.20)	0.017
		Yes	77 (24.21)	86 (16.9)		0.077
	Mother					
	Lung cancer	No	291 (91.51)	490 (96.27)	2.25 (1.21-4.18)	0.011
		Yes	27 (8.49)	19 (3.73)		0.010
	First-degree female relatives					
	Brother					
	Any cancer	No	264 (83.02)	469 (92.14)	2.37 (1.51-3.71)	<0.001
		Yes	54 (16.98)	40 (7.86)		< 0.001
	Sister					
	Lung cancer	No	298 (93.71)	504 (99.02)	7.31 (2.68-19.93)	<0.001
		Yes	20 (6.29)	5 (0.98)		< 0.001
	Second degree family					
	Third degree family					
	Environmental tobacco exposure					
	Chronic lung disease history					
	Cooking index ≥110					
	Cooking without ventilation					

^a Adjusted for sex, lung disease history, living environment, and occupational exposure.

Association between family history and risk of lung cancer in various population-based studies.

Type of relationship	Lung cancer [OR (95% CI)]					Any cancer [OR (95% CI)]				
	Wu et al. [5]	Mayne et al. [7]	Gorlova et al. [12]	Gao et al. [13]	Brenner et al. [14]	Wu et al. [5]	Mayne et al. [7]	Gorlova et al. [12]	Gao et al. [13]	Brenner et al. [14]
Sample size	216	437	316	101	622	216	437	316	122	622
Overall	3.7 (1.6-8.5) ^a	—	1.39 (0.91-2.13) ^c	1.69 (0.96-2.98) ^d	0.9 (0.4-2.1) ^e	2.6 (1.6-4.1) ^b	—	1.25 (1.05-1.50) ^c	1.25 (0.81-1.92) ^f	—
Father	2.3 (0.6-9.4) ^a	1.87 (0.79-4.42) ^c	2.09 (0.93-4.64) ^d	—	—	2.3 (0.9-5.6) ^b	1.67 (1.12-2.48) ^c	1.20 (0.84-1.71) ^f	—	—
Mother	7.5 (1.7-34.2) ^a	0.67 (0.11-3.99) ^c	0.37 (0.14-0.96) ^d	—	—	4.0 (1.5-10.4) ^b	1.24 (0.85-1.80) ^c	0.94 (0.65-1.35) ^f	—	—
Brother	0.5 (0.1-6.2) ^a	1.77 (0.85-3.68) ^c	1.75 (0.74-3.63) ^d	—	—	3.5 (1.1-11.0) ^b	1.58 (1.04-2.40) ^c	1.34 (0.91-1.97) ^f	—	—
Sister	—	4.14 (0.88-19.46) ^c	2.18 (0.59-7.22) ^d	—	—	1.5 (0.6-3.7) ^b	1.66 (1.11-2.47) ^c	1.17 (0.77-1.75) ^f	—	—

^a OR adjusted for pack-years of smoking, age, and years of cooking.
^b OR adjusted for gender, age, pack-years of smoking, years of cooking, and education.
^c Adjusted for ethnicity, gender and age of the proband, gender, age, smoking status, birth cohort of the relative, and type of relationship to the proband, where appropriate.
^d Adjusted for spousal smoking and for the covariates above, as appropriate.
^e ORs shown are crude ORs from conditional logistic regression analyses; therefore, they are based upon those pairs for which both the case and the control had informative data.
^f Adjusted for age (5-year interval), sex, residence (5 areas), education (5 categories), passive smoking (childhood at home, adulthood at home, at work).
^g Adjusted for age, sex, education, and ethnicity.

Lin & Wu, Lung Cancer 2015

What is clinical significance of the TALENT study?

Lung Cancer Screen:

Not only for tobacco exposure also for family
lung cancer history

Topics

Lung Cancer Screen

Perioperative adjuvant treatment

Target KRAS

Immunotherapy combo for advanced
NASCLC

Immunotherapy for mesothelioma

PLATFORM trial

International Tailored Chemotherapy Adjuvant (ITACA)

Phase III study of Pharmacogenomic-Driven versus Standard Adjuvant Chemotherapy in completely Resected Stage II-IIIA Non-Small Cell Lung Cancer

Silvia Novello
(on behalf of the ITACA investigators)

*University of Turin,
Department of Oncology
silvia.novello@unito.it*

ITACA trial : Design of the study

- Completely resected NSCLC R0 stage II-IIIA, Complete mediastinal LN resection or sampling
- ECOG PS 0-1
- Interval of 45-60 days between surgery and start of chemotherapy
- Adequate organ functions
- No prior malignancies except for treated basal cell or squamous cell skin cancer, in situ cervical cancer, or other cancers from which the patient has been disease-free for at least five years prior to enrolment

N=773

- 8Aug 2008: first pt randomized; 29Aug 2014 last pt randomized
- Dec 2010: Study Amendment for Staging (21% pts randomized)

- Randomization (allocation ratio of 1:1) performed in each genomic profile, stratified by disease stage (stage II v IIIA) and smoking status (never/former versus current)
- For the primary statistical analysis all control arms were grouped together (standard arm) as well as all tailored arms (tailored arm)

Surgical and Clinical Outcomes With **Neoadjuvant Atezolizumab** in Resectable Stage IB-IIIB NSCLC: LCMC3 Trial Primary Analysis

Jay M. Lee,¹ Jamie Chaft,² Alan Nicholas,³ G. Alexander Patterson,⁴ Saiama N. Waqar,⁴ Eric M. Toloza,⁵ Eric Haura,⁵ Dan J. Raz,⁶ Karen L. Reckamp,⁷ Robert E. Merritt,⁸ Dwight Owen,⁸ David J. Finley,⁹ Ciaran J. McNamee,¹⁰ Justin D. Blasberg,¹¹ Edward B. Garon,¹ John D. Mitchell,¹² Robert C. Doebele,¹² Frank Baciiewicz,¹³ Misako Nagasaka,¹⁴ Harvey I. Pass,¹⁵ Katja Schulze,³ See Phan,³ Ann Johnson,³ Paul A. Bunn,¹² Bruce E. Johnson,¹⁶ Mark G. Kris,² David J. Kwiatkowski,¹⁰ Ignacio I. Wistuba,¹⁷ David P. Carbone,⁸ Valerie W. Rusch²

¹David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ²Memorial Sloan Kettering Cancer Center, New York, NY, USA;
³Genentech, Inc, South San Francisco, CA, USA; ⁴Washington University School of Medicine, St Louis, MO, USA; ⁵Moffitt Cancer Center, Tampa, FL, USA; ⁶City of Hope Comprehensive Cancer Center Los Angeles, CA, USA; ⁷Cedars Sinai (previously City of Hope Comprehensive Cancer Center), Los Angeles, CA, USA; ⁸The Ohio State University Wexner Medical Center, Columbus, OH, USA; ⁹Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; ¹⁰Brigham and Women's Hospital, Boston, MA, USA; ¹¹Yale School of Medicine, New Haven, CT, USA; ¹²University of Colorado Cancer Center, Aurora, CO, USA; ¹³Wayne State University, Detroit, MI, USA; ¹⁴Karmanos Cancer Institute, Detroit, MI, USA; ¹⁵New York University, New York, NY, USA; ¹⁶Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁷The University of Texas MD Anderson Cancer Center, Houston, TX, USA

LCMC3 study design

NCT02927301

ctDNA, circulating tumor DNA; DFS, disease-free survival; IF, immunofluorescence; NGS, next-generation sequencing; PET-CT, positron emission tomography-computed tomography; q3mo, every 3 months. SOC, standard of care; TCRseq, T-cell receptor sequencing; TMB, tumor mutational burden.

^a T4 due to mediastinal organ invasion were excluded. ^b Mandatory

What are the discovery from ITACA study?

- **Median follow up** of 28.2 months (IQR: 9.9-55.8 months)
- **N. of deaths:** 154 (46% of expected events; 22% of ITT population)
- **HR (95%CI):** 0.76 (0.55-1.04)
- **Median OS, Tailored:** 96.4 (81.8- NR)
- **Median OS, Control:** 83.5 (60.1- NR)

What are the discovery from LCMC3 study?

Pathologic response in surgery population (n=159)

Pathologic regression defined as % viable tumor cells – 100%.

MPR, major pathologic response; pCR, pathologic complete response.

^a Error bars indicate 95% CI.

Major pathologic response in primary efficacy population (n=144)

What is clinical significance of the ITACA & LCMC3 study?

- It is impossible to tailor adjuvant chemotherapy for complete resected lung cancer patients selected by precision genomic aberration
- Monotherapy with PD-L1 inhibitor atezolizumab as neoadjuvant treatment achieved a promising results with MPR of 21% and pCR of 7%

Topics

Lung Cancer Screen

Perioperative adjuvant treatment

Target KRAS

Immunotherapy combo for advanced
NASCLC

Immunotherapy for mesothelioma

PLATFORM trial

CodeBreak 100: Registrational Phase 2 Trial of Sotorasib in KRAS p.G12C Mutated Non-small Cell Lung Cancer

Bob T. Li,¹ Ferdinandos Skoulidis,² Gerald Falchook,³ Adrian Sacher,⁴ Vamsidhar Velcheti,⁵ Grace K. Dy,⁶ Timothy J. Price,⁷ Hossein Borghaei,⁸ Martin Schuler,⁹ Terufumi Kato,¹⁰ Toshiaki Takahashi,¹¹ Alexander Spira,¹² Suresh Ramalingam,¹³ Benjamin Besse,¹⁴ Fabrice Barlesi,¹⁵ Qui Tran,¹⁶ Agnes Ang,¹⁶ Abraham Anderson,¹⁶ Haby Henary,¹⁶ Gataree Ngarmchamnanirth,¹⁶ Ramaswamy Govindan,¹⁷ Jürgen Wolf¹⁸

¹Memorial Sloan Kettering Cancer Center, New York, New York, USA; ²The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; ³Sarah Cannon Research Institute at HealthONE, Denver, Colorado, USA; ⁴Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; ⁵Thoracic Medical Oncology, Perlmutter Cancer Center, New York University, New York, New York, USA; ⁶Roswell Park Cancer Institute, Buffalo, New York, USA; ⁷The Queen Elizabeth Hospital and University of Adelaide, Woodville South, Australia; ⁸Fox Chase Cancer Center, Philadelphia, PA, USA; ⁹Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, German Cancer Consortium (DKTK), Germany; ¹⁰Kanagawa Cancer Center, Yokohama, Japan; ¹¹Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan; ¹²Virginia Cancer Specialists Research Institute, Fairfax, VA, The US Oncology Network, TX; Johns Hopkins Medicine, Baltimore, MD, USA ¹³Division of Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA; ¹⁴Department of Cancer Medicine, Gustave Roussy, Villejuif, France; ¹⁵Gustave Roussy, Villejuif, France; ¹⁶Amgen Inc. Thousand Oaks, California, USA; ¹⁷Alvin J Siteman Cancer Center at Washington University School of Medicine, St Louis, Missouri, USA. ¹⁸Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany

CodeBreaK 100 Trial Design

clinicaltrials.gov identifier: NCT03600883

Screening / Enrollment

Key Eligibility:

- Locally advanced or metastatic NSCLC
- KRAS p.G12C mutation as assessed by central testing of tumor biopsies
- Progressed on prior standard therapies^a
- No active brain metastases

Sotorasib was orally administered at 960 mg once daily until disease progression^b

Radiographic scan every 6 weeks up to week 48 and once every 12 weeks thereafter

Primary endpoint: ORR (RECIST 1.1) by blinded independent central review

Key secondary endpoints: DoR; disease control rate; TTR; PFS; OS; safety

Exploratory endpoints: Evaluation of biomarkers (PD-L1, co-occurring mutations)

Safety and Long-term Follow-up^c

a: no more than 3 prior lines of therapies were allowed; b: treatment beyond disease progression was allowed if certain criteria were met; c: safety follow-up occurs 30 (+7) days after the last dose of sotorasib; long-term follow-up occurs every 12 (± 2) weeks for up to 3 years.

NSCLC: non-small cell lung cancer; ORR: objective response rate; DoR: duration of response; TTR: time to response; PFS: progression-free survival; OS: overall survival; PD-L1: programmed death-ligand 1; RECIST: Response Evaluation Criteria in Solid Tumors.

Depth of Tumor Response & Progression free Survival

Tumor shrinkage of any magnitude was observed in 81% of patients (101/124) Median percentage of best tumor shrinkage among all responders was 60%

Median progression-free survival was 6.8 months (95% CI: 5.1, 8.2)

What are the discovery from CodeBreak 100 study?

Drug	Trial	N	RR	DOR	PFS		
Sotorasib	Phase I	59	32.2%	10.9 months	6.3 months		
Adagrasib	Phase I/II	51	Results of Phase 2 trial repeated that of Phase 1 trial				
Sotorasib	Phase II	126	37.1%	10.0 months	6.8 months		

- Most common TRAEs are GI toxicities (nausea, vomiting, diarrhea, ALT/AST increases)
- Most TRAEs are grade 1 and 2
- TRAEs leading to discontinuations < 10%

Hong et al., NEJM 2020; Jänne et al. ENA 2020; Li et al. WCLC 2020

What is clinical significance of the CodeBreaK100 study?

KRAS^{G12C} Inhibition with Sotorasib in Advanced Solid Tumors

D.S. Hong, M.G. Fakih, J.H. Strickler, J. Desai, G.A. Durm, G.I. Shapiro, G.S. Falchook, T.J. Price, A. Sacher, C.S. Denlinger, Y.-J. Bang, G.K. Dy, J.C. Krauss, Y. Kuboki, J.C. Kuo, A.L. Coveler, K. Park, T.W. Kim, F. Barlesi, P.N. Munster, S.S. Ramalingam, T.F. Burns, F. Meric-Bernstam, H. Henary, J. Ngang, G. Ngarmchamnanirth, J. Kim, B.E. Houk, J. Canon, J.R. Lipford, G. Friberg, P. Lito, R. Govindan, and B.T. Li

FDA Approval Sought for Sotorasib for KRAS G12C–Mutated Advanced or Metastatic NSCLC on Dec 17, 2020

Topics

Lung Cancer Screen

Perioperative adjuvant treatment

Target KRAS

Immunotherapy combo for advanced NSCLC

Immunotherapy for mesothelioma

PLATFORM trial

Pembrolizumab Plus Ipilimumab vs Pembrolizumab Plus Placebo as 1L Therapy For Metastatic NSCLC of PD-L1 TPS $\geq 50\%$: KEYNOTE-598

Michael Boyer,¹ Mehmet A.N. Şendur,² Delvys Rodríguez-Abreu,³ Keunchil Park,⁴ Dae Ho Lee,⁵ Irfan Ciçin,⁶ Perran Fulden Yumuk,⁷ Francisco J. Orlandi,⁸ Ticiana A. Leal,⁹ Olivier Molinier,¹⁰ Nopadol Soparattanapaisam,¹¹ Adrian Langleben,¹² Raffaele Califano,¹³ Balazs Medgyasszay,¹⁴ Te-Chun Hsia,¹⁵ Gregory A. Otterson,¹⁶ Lu Xu,¹⁷ Bilal Piperdi,¹⁷ Ayman Samkari,¹⁷ Martin Reck¹⁸

¹Chris O'Brien Lifehouse, Camperdown, NSW, Australia; ²Ankara Yıldırım Beyazıt University, Faculty of Medicine and Ankara City Hospital, Ankara, Turkey ³Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain; ⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁵Asan Medical Center, Seoul, South Korea; ⁶Trakya University, Erdine, Turkey; ⁷Marmara University School of Medicine, Istanbul, Turkey; ⁸Orlandi-Oncología, Providencia, Chile; ⁹University of Wisconsin Carbone Cancer Center, Madison, WI, USA; ¹⁰Hospital of Le Mans, Le Mans, France; ¹¹Mahidol University, Siriraj Hospital, Bangkok, Thailand; ¹²St. Mary's Hospital – ODIM, McGill University Department of Oncology, Montreal, QC, Canada; ¹³The Christie NHS Foundation Trust, and Division of Cancer Sciences, The University of Manchester, Manchester, UK; ¹⁴Veszprém Megyei Tüdőgyógyintézet Farkasgyepű, Farkasgyepű, Hungary; ¹⁵China Medical University and China Medical University Hospital, Taichung, Taiwan; ¹⁶The Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA; ¹⁷Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁸LungenClinic, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany

KEYNOTE-598 Study Design

Key Eligibility Criteria

- Stage IV NSCLC
- No prior systemic therapy
- ECOG PS 0 or 1
- PD-L1 TPS $\geq 50\%$ ^a
- No targetable *EGFR* mutations or *ALK* translocations^b
- No known untreated CNS metastases
- ≥ 1 lesion measurable per RECIST v1.1

Stratification Factors

- ECOG PS (0 vs 1)
- Region (East Asia vs not East Asia)
- Histology (squamous vs nonsquamous)

End Points

- **Dual primary:** OS and PFS per RECIST v1.1 by BICR
- **Key secondary:** ORR and DOR per RECIST v1.1 by BICR and safety

^aAssessed centrally using the PD-L1 IHC 22C3 pharmDx assay (Agilent).

^bPatients with *ROS1* rearrangement were also excluded if *ROS1* testing and treatment were locally approved and accessible.

KEYNOTE-598 ClinicalTrials.gov identifier, NCT03302234. BICR, blinded independent central review.

^aAlpha controlled using the graphical method of Maurer and Bretz. ^bRandomization stratification factors applied to all stratified analyses. ^cRMST is an alternative means of assessing a treatment effect; it is defined as the average survival from time 0 to a specified time point and is equivalent to the area under the KM curve from time 0 to the specified time point.

What are the discovery from KeyNote 598 study?

What are the discovery from KeyNote 598 study?

No suggestion of further OS advantage with immunochemotherapy over immunootherapy in PD-L1 \geq 50% population

	KN024 ¹	KN042 ²	IMPOWER 110 ³	IMPOWER-Lung ¹⁴	KN189 ⁵	KN407 ⁶
N^a	154	299	107	365	132	73
Design	Pembro vs Chemo	Pembro vs Chemo	Atezo vs Chemo	Cemipli vs Chemo	Pem+Chemo vs Chemo	Pem+Chemo vs Chemo
PDL1 Stratum	\geq 50%	\geq 50%	TC3 or IC3	\geq 50%	\geq 50%	\geq 50%
mPFS, mo HR	7.7 vs 5.5 HR 0.5	7.1 vs 6.4 HR 0.81	8.1 vs 5.0 HR 0.63	6.2 vs 5.6 HR 0.59	11.1 vs 4.8 HR 0.36	8.0 vs 4.2 HR 0.37
mOS, mo HR	26.3 vs 13.4 HR 0.62	20.0 vs 12.2 HR 0.7	20.2 vs 13.1 HR 0.59	22.1 vs 14.3 HR 0.68	27.7 vs 10.1 HR 0.59	NR HR 0.64
2-y OS, %	51.7 vs 34.5	44.7 vs 31.1	NR	48.6 vs 29.7	51.9 vs 39.4	NR
5-y OS, %	31.9 vs 16.3	NR	NR	NR	NR	NR

Single-agent Immunotherapy has become the new standard care for PD-L1 \geq 50% advanced NSCLC

Topics

Lung Cancer Screen

Perioperative adjuvant treatment

Target KRAS

Immunotherapy combo for advanced
NASCLC

Immunotherapy for mesothelioma

PLATFORM trial

Nivolumab Versus Placebo in Relapsed Malignant Mesothelioma: Preliminary results from the CONFIRM Phase 3 Trial

Dean Fennell¹, Christian Ottensmeier², Raffaele Califano³, Gerard G Hanna⁴, Sean Ewings⁵, Kayleigh Hill⁵, Sam Wilding⁵, Sarah Danson⁶, Mavis Nye⁵, Nicola Steele⁷, Lucy Johnson⁵, Joanne Lord⁸, Calley Middleton⁵, Ellice Marwood⁵, Peter Szlosarek⁹, Sam Chan¹⁰, Aarti Gaba¹, Liz Darlison¹¹, Peter Wells-Jordan¹, Cathy Richards¹, Charlotte Poile¹, Jason F Lester¹², Gareth Griffiths⁵

¹University of Leicester, UK; ²University of Liverpool, UK; ³The University of Manchester, UK; ⁴Peter MacCallum Cancer Centre, University Melbourne, Australia; ⁵CRUK Southampton Clinical Trials Unit, University of Southampton, UK; ⁶University of Sheffield, UK; ⁷Beatson West of Scotland Cancer Centre, UK; ⁸Southampton Health Technology Assessments Centre, University of Southampton, UK; ⁹Barts Cancer Institute, UK; ¹⁰York Teaching Hospital NHS Foundation Trust, UK; ¹¹Mesothelioma UK; ¹²South West Wales Cancer Centre, UK.

CONFIRM Trial Design

Key eligibility criteria:

Mesothelioma
> 1 prior line of therapy
ECOG status 0 or 1

Administered until progression,
unacceptable toxicity,
withdrawal or 12m

Target sample size: 336

Study halted recruitment at n=332 due to COVID-19 pandemic but sufficient event/follow-up

Co-primary outcomes:

- Overall survival
- Investigator-reported progression-free survival

Secondary outcomes:

- RECIST-determined progression-free survival
- Response rate
- EQ-5D
- Safety

Funders:

- Cancer Research UK/SU2C
(C16728/A21400)
- BMS (investigator initiated)

COORDINATING GROUP:

Southampton Clinical Trials Unit

SPONSOR:

University of Southampton

What are the discovery from CONFIRM study?

OS

Number at risk

Nivolumab	221	191	132	95	58	40	24	19	10	9	1
Placebo	111	90	53	29	18	9	5	3	2	2	0

— Nivolumab — Placebo

CONFIRM: Met Co-Primary Endpoints

PFS

(Investigator-Assessed)

Number at risk

Nivolumab	221	108	66	42	26	13	5	4	3	1	0
Placebo	111	36	21	8	4	2	0	0	0	0	0

— Nivolumab — Placebo

Immunotherapy Studies in Relapsed Mesothelioma

Study	Phase	Agent (s)	n	ORR	mPFS (m)	mOS (m)
KN 028	Ib	Pembrolizumab	25 (PD-L1 pos)	20%	5.4m	18m
JAVELIN	Ib	Avelumab	53	9%	4.1m	10.7m
Treme (Italy)	II	Tremelimumab	29	14%	6.2m	11.3m
MERIT	II	Nivolumab	34	29%	6.1m	17.3m
Pembro (Chicago)	II	Pembrolizumab	64	22%	4.1m	11.5m
NIBIT-meso1	II	Treme / Durva	40 (30% 1L)	28%	5.7m	16.6m
INITIATE	II	Nivo / Ipi	34	29%	NR: >6.2m	NR: >12.7m
MAPS2	II	Nivo or Nivo/Ipi	63 & 62	19% & 28%	4.0m & 5.6m	11.9m & 15.9m
DETERMINE	IIb	Treme vs placebo	571 (2:1)	4.5%	2.8m	7.7m
PROMISE-meso	III	Pembro vs Chemo	144	22%	2.5m	10.7m
CONFIRM	III	Nivo vs placebo	332	10.4%	3.0m	9.2m

Alley et. al., *Lancet Oncol*, 2017; Hassan et. al., *JAMA Oncol*, 2019; Calabro et. al., *Lancet Respir Med*, 2015; Okada et. al., *Clin Cancer Res*, 2019; Desai et. al., *WCLC*, 2018; Calabro et. al., *Lancet Respir Med*, 2018; Disselhorst et. al., *Lancet Respir Med*, 2019; Scherpereel et. al., *Lancet Oncol*, 2019; Maio et. al., *Lancet Oncol*, 2017; Popat et.al., *Ann Oncol*, 2019; Fennell et.al., *WCLC*, 2020

What is clinical significance of the CONFIRM study?

- The phase III CONFIRM placebo-controlled study met both PFS and OS endpoints, with 12.6% improvement in 12-month survival rate.

Topics

Lung Cancer Screen

Perioperative adjuvant treatment

Target KRAS

Immunotherapy combo for advanced
NASCLC

Immunotherapy for mesothelioma

PLATFORM trial

HUDSON

An Open-Label, Multi-Drug, Biomarker-Directed, Phase II Platform Study in Patients with Non-Small Cell Lung Cancer, who Progressed on an anti-PD(L)-1 Therapy

Benjamin Besse

Institut Gustave Roussy, Villejuif and Paris-Sud University,
Paris, France

On behalf of the HUDSON study group

B. Besse, M. Awad, P. Forde, M. Thomas, K. Park, G. Goss, N. Rizvi, F. Huemer,
M. Hochmair, J. Bennouna, J. Cosaert, Z. Szucs, P. Mortimer, R. Hobson,
K. Sachsenmeier, E. Dean, H. Ambrose, C. Hayward, M. Dressman, S. Barry, J. Heymach

HUDSON study design

Locally advanced or metastatic NSCLC
Previous platinum-based chemotherapy
Failed Anti-PD(L)1 treatment
Biopsiable disease
Targetable EGFR, ALK, ROS1, BRAF, MET or RET alterations were excluded

Group A: biomarker matched (n=85)
Central molecular screen[†] (n=617)
Group B: biomarker non-matched (n=177)

HRRm	olaparib and durvalumab (PARPi)
STK11	olaparib and durvalumab (PARPi)
ATM	ceralasertib and durvalumab (ATRi)
CD73	oleclumab and durvalumab (CD73i)
HER2e	trastuzumab deruxtecan and durvalumab (HER2i)
HER2m	trastuzumab deruxtecan and durvalumab (HER2i)
Primary resistance [‡] (n=74)	
Acquired resistance [§] (n=103)	
olaparib and durvalumab (PARPi)	olaparib and durvalumab (PARPi)
danvatirsen and durvalumab (STAT3i)	danvatirsen and durvalumab (STAT3i)
ceralasertib and durvalumab (ATRi)	ceralasertib and durvalumab (ATRi)
oleclumab and durvalumab (CD73i)	oleclumab and durvalumab (CD73i)
olaparib and durvalumab (PARPi)	olaparib and durvalumab (PARPi)
danvatirsen and durvalumab (STAT3i)	danvatirsen and durvalumab (STAT3i)
ceralasertib and durvalumab (ATRi)	ceralasertib and durvalumab (ATRi)
oleclumab and durvalumab (CD73i)	oleclumab and durvalumab (CD73i)
cediranib and durvalumab (VEGFi)	cediranib and durvalumab (VEGFi)

Primary endpoint:

- Overall response rate

Secondary endpoints:

- Progression-free survival
- Overall survival
- Disease control rate
- Safety and tolerability

[†]Immunohistochemistry was also performed. [‡]PD on ICI within 24 weeks (fresh biopsy or archived tissue); [§]PD on ICI > 24 weeks (fresh biopsy or archived tissue). ATM, ataxia-telangiectasia mutated; ATRi, ataxia-telangiectasia receptor inhibitor; CD73, cluster of differentiation 73; HER2, human epidermal growth factor receptor 2; HRR, homologous recombination repair; NSCLC, non-small-cell lung cancer; PARPi, poly ADP ribose polymerase inhibitor; PD, progression of disease; STAT3i, Signal transducer and activator of transcription 3 inhibitor; STK11, Serine/threonine kinase 11 (also known as LKB1)

HUDSON – ORR and median PFS

	N	mF/U m	ORR n (%)	Median PFS m (80% CI)	PFS rate (%) 6, 9 and 12 m
Olaparib HRR	21	2.8	2 (9.5)	2.79 (1.48 – 5.26)	
Olaparib STK11	21	1.4	1 (4.8)	1.41 (1.38 – 1.81)	
Ceralasertib ATM	18	5.0	2 (11.1)	7.43 (3.45 – 9.46)	
Oleclumab 73H	23	1.5	0 (0)	1.58 (1.41 – 2.76)	
Olaparib	22	2.8	0 (0)	3.38 (2.10 – 4.93)	
Danvatirsen	23	1.7	0 (0)	1.68 (1.64 – 2.99)	
Ceralasertib	20	2.6	2 (10.5)	4.24 (1.94 – 6.77)	
Oleclumab	9	1.4	0 (0)	1.41 (1.35 – 1.81)	
Olaparib	23	4.2	1 (4.3)	4.17 (2.69 – 4.37)	
Danvatirsen	22	2.8	0 (0)	3.09 (2.83 – 6.14)	
Ceralasertib	24	4.6	2 (8.3)	4.96 (3.55 – 5.98)	
Oleclumab	25	2.6	1 (4.2)	2.63 (1.64 – 2.79)	

Data in italics are not yet mature; treatment modules include the biomarker selected, primary resistance and acquired resistance cohorts for each drug combination
 73H, signal transducer and activator of transcription 3-73H; ATM, ataxia-telangiectasia mutated; CI, confidence interval; HRR, homologous recombination repair; m, months; mF/U, median follow-up; NC, not calculated; ORR, objective response rate; PFS, progression-free survival; STK11, Serine/threonine kinase 11 (also known as LKB1)

PFS as a function of treatment module (selected + unselected)

Olaparib	87	36	15	11	9	5	1	0
Danvatirsen	45	17	8	3	1	0		
Ceralasertib	62	39	22	12	3	1	1	0
Oleclumab	57	16	6	1	0			

HUDSON – median OS

	N	mF/U m	Median OS m (80% CI)	OS rate (%) 6, 9 and 12 m
Olaparib HRR	21	9.6	9.63 (5.26 – 15.97)	
Olaparib STK11	21	5.6	5.75 (5.29 – 10.84)	
Ceralasertib ATM	18	10.5	15.80 (11.01 – NC)	
Oleclumab 73H	23	7.6	9.49 (7.49 – NC)	
Olaparib	22	7.2	7.16 (4.93 – 10.28)	
Danvartirsen	23	6.0	6.01 (3.55 – 6.51)	
Ceralasertib	20	6.7	11.60 (10.45 – NC)	
Oleclumab	9	2.8	7.06 (4.90 – 7.06)	
Olaparib	23	11.6	15.51 (8.80 – 19.75)	
Danvartirsen	22	10.8	11.20 (9.72 – 12.55)	
Ceralasertib	24	12.7	17.38 (14.06 – NC)	
Oleclumab	25			

Significance:

HUDSON demonstrates that molecularly stratified enrolment in the immune therapy failed setting is feasible

OS as a function of treatment module (selected + unselected)

34	27	18	9	7	0	
12	7	4	2	0		
23	17	2	0			
6	3	0				

Data in *italics* are not yet mature; treatment modules include 73H, signal transducer and activator of transcription 3-73H, median follow-up; NC, not calculated; OS, overall survival

Thank you for your attention

Welcome Message

It is our great pleasure and honor to extend a warm invitation to attend and participate in the 2020 World Conference on Lung Cancer (#WCLC20) of the International Association for the Study of Lung Cancer (IASLC) to be held January 28 - 31, 2020 (WCLC 2020 Virtual).

Yi-long Wu
IASLC WCLC 2020
Conference President

Daniel Tan
IASLC WCLC 2020
Conference Co-Chair

Ross Soo
IASLC WCLC 2020
Conference Co-Chair

Selected Day 4 Abstracts

Ross Soo, MBBS, PhD, FRACP

Senior Consultant

Department of Hematology-Oncology

National University Cancer Institute, Singapore

Disclosures

Ross Soo, MBBS, PhD, FRACP

- › **Advisory Board:** Amgen, Astra-Zeneca, Bayer, BMS, Boehringer Ingelheim, Lilly, Merck, Novartis, Pfizer, Roche, Taiho, Takeda, Yuhan
- › **Research grant:** Astra-Zeneca, Boehringer Ingelheim

2020 World Conference
on Lung Cancer Singapore

A phase 1 study of AMG 757, a half-life extended bispecific T-cell engager (BiTE®) immuno-oncology therapy against DLL3, in SCLC

Taofeek K. Owonikoko,¹ Michael Boyer,² Melissa Johnson,³ Ramaswamy Govindan,⁴ Luis Paz-Ares Rodrigues,⁵ Fiona H. Blackhall,⁶ Rene J. Boosman,⁷ Stéphane Champiat,⁸ Horst-Dieter Hummel,⁹ W. Victoria Lai,¹⁰ Hibiki Udagawa,¹¹ Anne C. Chiang,¹² Afshin Dowlati,¹³ Christine L. Hann,¹⁴ Ravi Salgia,¹⁵ Everett E. Vokes,¹⁶ Mukul Minocha,¹⁷ Nooshin Hashemi Sadraei,¹⁷ Aditya Shetty,¹⁷ Marie-Anne Damiette Smit,¹⁷ Yiran Zhang,¹⁷ Amrita Pati,¹⁷ Sumi Roy,¹⁷ Beate Sable,¹⁷ Hossein Borghaei¹⁸

¹Emory University School of Medicine, Atlanta, GA, USA; ²Chris O'Brien Lifehouse, Camperdown, NSW, Australia; ³Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA; ⁴Washington University Medical School, St. Louis, MO, USA; ⁵Hospital Universitario 12 de Octubre, Universidad Complutense & Ciberonc, Madrid, Spain; ⁶The Christie NHS Foundation Trust, University of Manchester, Manchester, UK; ⁷The Netherlands Cancer Institute, Amsterdam, Netherlands; ⁸Gustave Roussy, Paris-Saclay University, Villejuif, France; ⁹Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, Wuerzburg, Germany; ¹⁰Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹¹National Cancer Center Hospital East, Kashiwa, Chiba, Japan; ¹²Yale School of Medicine, New Haven, CT, USA; ¹³University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA; ¹⁴Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA; ¹⁵City of Hope Hospital, Duarte, CA, USA; ¹⁶University of Chicago Medicine and Biological Sciences, Chicago, IL, USA; ¹⁷Amgen Inc., Thousand Oaks, CA, USA; ¹⁸Fox Chase Cancer Center, Philadelphia, PA, USA

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Key Eligibility Criteria & Baseline Demographics

Inclusion Criteria

- Histologically/cytologically confirmed SCLC
 - Received ≥ 1 line systemic therapy
 - Progressed/recurred following ≥ 1 platinum-based chemotherapy
- ECOG performance status: 0–2
- ≥ 1 measurable lesion(s)
- Adequate organ function

Exclusion Criteria

- Untreated or symptomatic brain metastases
- Prior anti-cancer therapy within 28 days
- Immunodeficiency or systemic steroid use
- Interstitial lung disease

ECOG, Eastern Cooperative Oncology Group; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; SCLC, small cell lung cancer.

Baseline Characteristic	All Patients (N = 52)
Median age, years (range)	64 (32–80)
Current/former smoker, n (%)	8 (15) / 36 (69)
ECOG performance status: 0–1, n (%)	51 (98)
Prior lines of therapy	
1–2, n (%)	39 (75)
≥ 3 , n (%)	13 (25)
Median (range)	2 (1–6)
Prior PD-1 or PD-L1 treatment, n (%)	23 (44)
Extensive stage disease at initial diagnosis, n (%)	50 (96)
Brain / liver metastases, n (%)	13 (25) / 25 (48)

AMG 757 Demonstrates Anti-Tumor Activity in Patients with SCLC

PR** indicates the PR is unconfirmed. SD[†] indicates patients who had an initial PR, but did not have confirmation of PR on the subsequent scan. NE indicates PD in the post-baseline scan and came off study without further confirmation scan.

*Step dosing. [†]Includes patients who received ≥ 1 dose of AMG 757 and had at least 8 weeks follow-up. NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease.

Modified RECIST 1.1 Response, n (%)	Patients [†] (N = 51)
PR, confirmed	7 (14)
0.3 mg target dose	1/12 (8)
1 mg target dose	1/8 (13)
3 mg target dose	3/9 (33)
10 mg target dose	2/10 (20)
PR, unconfirmed	1 (2)
30 mg target dose	1 (2)
SD	11 (22)
Disease control rate, %	37

Adverse Events (AEs) Summary

Treatment-related AEs	Patients (N = 52)	
	All Grades, n (%)	Grade \geq 3, n (%) [*]
Any treatment-related AE	41 (79)	12 (23)
Treatment-related AEs in \geq 10% of patients		
CRS	23 (44)	1 (2)[†]
Pyrexia	10 (19)	0
Fatigue	7 (14)	0
Anemia	5 (10)	1 (2)
Nausea	5 (10)	0

^{*}Includes one patient with grade 5 pneumonitis; [†] Grade 3 CRS, more detail presented on next slide.

AE, adverse event; CRS, cytokine release syndrome; DLT, dose limiting toxicity.

- Treatment-emergent AEs occurred in 51/52 (98%) patients
 - Grade \geq 3 occurred in 27 (52%) patients
- Treatment-related AEs occurred in 41 (79%) patients, resulting in discontinuation in 1 (2%) patient
 - The one DLT was grade 5 pneumonitis and occurred in 1 (2%) patient

AMG 757 monotherapy demonstrated a favorable safety profile

Conclusions

- The results presented herein support AMG 757 as the first half-life extended BiTE® immuno-oncology therapy with a favorable safety profile and a durable response profile
 - Grade 3 treatment-related AEs occurred in 12 (23%) patients
 - CRS events were primarily grade 1 or 2 with only 1 case (2%) of grade 3 CRS
 - Only 1 discontinuation of treatment due to treatment-related AEs
 - Encouraging efficacy was observed during dose exploration, with confirmed PR in 14% of patients; response was durable, with a median duration of 6.2 months
- Dose optimization for monotherapy is ongoing

2020 World Conference
on Lung Cancer Singapore

EFFICACY AND SAFETY PROFILE OF LURBINECTEDIN-IRINOTECAN IN PATIENTS WITH RELAPSED SCLC

Results from a phase Ib-II trial

Santiago Ponce¹, Gregory M. Coté², Alejandro Falcón³, Elizabeth Jimenez-Aguilar¹, Jessica J Lin², Inmaculada Sánchez Simón³, María José Flor³, Rafael Núñez⁴, Ana M Jiménez⁴, Eva Jiménez⁴, Sonia Extremera⁴, Carmen Kahatt⁴, Ali Zeaiter⁴, Luis Paz-Ares¹

¹Hospital Universitario 12 de Octubre, Madrid, Spain. ²Massachusetts General Hospital, Boston, MA, U.S.A. ³Hospital Universitario Virgen del Rocío, Sevilla, Spain. ⁴Pharma Mar, S.A., Colmenar Viejo, Madrid, Spain.

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Study Design

SCLC cohort, Baseline characteristics (n=21)

Baseline Characteristics		n= 21
Median age	Years	61 (52-74)
Sex	Male	48%
	Female	52%
ECOG	0	24%
	1	76%
LDH	>ULN	76%
Stage at diagnosis	Limited	19%
	Extensive	81%
Most common sites (no lung)	Lymph nodes	90%
	Liver	48%
	Adrenal	38%
	Bone	38%
Bulky disease	1 lesion > 50mm	29%

Baseline Characteristics		n= 21
Sum longest diameters mm.	Median (range)	86 (19-180)
CNS metastases		24%
PCI		48%
Prior lines for advanced disease	Median (range)	1 (1-2)
	1 line	62%
	2 lines	38%
Best response to prior platinum	CR-PR	71%
	SD	5%
	PD	19%
	UNK	5%
CTFI	Median (months)	3.2 months
	<90 days	38%
	≥90 days	62%

SCLC cohort, Safety (n=21)

Adverse Events and Laboratory abnormalities		Grade 1-2, %	Grade 3-4, %
Treatment-related adverse events	Fatigue	66.7	23.8*
	Nausea	57.1	-
	Vomiting	38.1	4.8
	Diarrhea	33.3	28.6**
	Constipation	19	-
	Abdominal pain	4.8	-
	Anorexia	52.4	-
	Febrile neutropenia	-	9.5
Laboratory abnormalities	Anemia	81	19
	Neutropenia	33.3	61.9***
	Thrombocytopenia	66.7	9.5
	ALT increase	57.1	4.8
	AST increase	61.9	4.8

ALT, alanine aminotransferase; AST, aspartate aminotransferase; IRI, irinotecan; LUR, lurbinectedin.

*1 episode per patient (n=5 pts) **All were grade 3. 1 episode per patient, except in 1 patient (2 episodes of 1 day of duration each)

*** 6/21 pts (28.6 %) neutropenia grade 4

Related AEs summary / dose modifications / supportive treatment	n (%)
Any AE	21 (100)
AE \geq grade 3	16 (76.2)
SAEs	6 (28.5)
Related AEs leading to death	0 (0.0)
Related AEs leading to treatment discontinuation	0 (0.0)
Dose delays treatment related	6 (28.6)
Dose reductions	11 (52.4)
Transfusions (red blood)	7 (33.3)

SCLC cohort, efficacy table (n=21)

	All patients (n=21)	CTFI		Setting	
		≥90 days (n=13)	<90 days (n=8)	2 nd line (n=13)	3 rd line (n=8)
Median number of cycles (range)	8+ (1-20)	10+ (6-20)	6+ (1-8)	8+ (3-21)	8+ (1-18)
Objective Response Rate (PR)	62%	69%	50%	77%	38%
Clinical Benefit Rate (PR+SD>4m)	81%	92.3%	62.5%	92.3%	62.5%
Disease Control Rate (PR+SD)	90%	100%	75%	100%	75%
Median DOR (m) (95% CI)	6.7+ (3.0-N.R)	7.5+ (3.0-N.R)	3.7+ (2.8-3.7)	6.7+ (3.0-N.R)	3.0+ (3.0-N.R)
Median PFS (m) (95% CI)	6.2+ (4.3-8.5)	8.1+ (4.3-N.R)	4.8+ (0.7-5.0)	8.5+ (4.8-N.R)	4.2+ (0.7-7.2)

N.R not reached

CONCLUSIONS

- ❖ The combination of lurbinectedin and irinotecan after failure of first-line therapy, demonstrates remarkable antitumor activity in SCLC
- ❖ Noticeable activity is being observed in pts with poor prognosis such as those with resistant disease (CTFI <90 days), in the 3rd line setting and those with brain metastases.
- ❖ Toxicity is transient and manageable, being mainly hematological abnormalities, fatigue and diarrhea, with no discontinuations due to AE and no toxic deaths
- ❖ This cohort of patients with SCLC is being expanded up to 47 patients
- ❖ Further development of this combination is warranted in pts with SCLC

2020 World Conference
on Lung Cancer Singapore

Whole Exome Sequencing Reveals the Potential Role of Hereditary Predisposition in Small Cell Lung Cancer, a Tobacco-Related Cancer

Nobuyuki Takahashi¹, Camille Tlemsani¹, Lorinc Pongor¹, Vinodh N. Rajapakse¹, Manoj Tyagi¹, Xinyu Wen¹, Grace-Ann Fasaye¹, Keith T. Schmidt¹, Chul Kim², Arun Rajan¹, Shannon Swift¹, Linda Sciuto¹, Rasa Vilimas¹, Santhana Webb¹, Samantha Nichols¹, William Douglas Figg¹, Yves Pommier¹, Kathleen Calzone¹, Seth M. Steinberg¹, Jun S. Wei¹, Udayan Guha¹, Clesson E. Turner³, Javed Khan¹, Anish Thomas¹

¹Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA

²Georgetown University, Washington DC, USA

³Walter Reed National Military Medical Center, Bethesda, MD

NIH

NATIONAL CANCER INSTITUTE

Center for Cancer Research

Germline mutations are highly prevalent in patients with SCLC

- 34/77 (44.2%) of SCLC patients had a P/LP germline mutation
- 9/77 (11.7%) of SCLC patients had a P/LP germline mutation in ACMG genes
- Most genes were involved in DNA repair (66.7%)
- 3/31 cases with available tumor had loss of heterozygosity (*BRCA2*, *MLH1*, *SMARCA4*)

Germline genotype is associated with family history of cancer and platinum sensitivity

Recurrence free survival with platinum

Overall survival since diagnosis

Updated efficacy, safety, and dosing management of poziotinib in previously treated EGFR and HER2 exon 20 NSCLC patients

**R Cornelissen¹, MC Garassino², X Le³, J Clarke⁴, N Tchekmedyan⁵, J Goldman⁶,
F Lebel⁷, G Bhat⁷, MA Socinski⁸**

¹Erasmus Medical Center, Netherlands; ²Fondazione IRCCS Istituto Nazionale dei Tumori, Italy;

³The Univ Texas MD Anderson Cancer Center, TX; ⁴Duke Cancer Institute, NC; ⁵Pacific Shores Medical Group, CA; ⁶Univ California Los Angeles, CA; ⁷Spectrum Pharmaceuticals, CA;
⁸AdventHealth Cancer Institute, FL

RD-POZ-0002

By Cornelissen, Erasmus Medical Center, Rotterdam, Netherlands

IASLC

2020 World Conference
on Lung Cancer Singapore

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Efficacy in patient subgroups

EGFR

- Responses observed regardless of lines of therapy in EGFR cohorts

HER2

- Higher responses (38.7%) observed in patients with ≥ 3 prior lines of therapy than overall
- Clinical activity seen in all 14 patients with baseline CNS metastasis; Responses seen in 4 (28.6%); none had progression in brain lesion resulting in CNS specific DCR of 100%

Exon 20 mutations Type

- No clear differences between types of Exon 20 mutations in EGFR or HER2 cohorts

	2L EGFR Exon 20 (N=115) ORR % (n/N)	2L HER2 Exon 20 (N=90) ORR % (n/N)
Lines of Therapy		
1 Line	14.3 (7/49)	23.3 (7/30)
2 Lines	13.8 (4/29)	20.7 (6/29)
3+ Lines	16.2 (6/37)	38.7 (12/31)
Chemotherapy only		
TKI	10.3 (3/29)	31.8 (7/22)
HER2 therapy	6.9 (2/29)	NA
Immune checkpoint inhibitors	NA	24.0 (6/25)
Stable brain metastasis at baseline	21.1 (12/57)	27.9 (12/43)
Stable brain metastasis at baseline	8.3 (1/12)	28.6 (4/14)

Conclusions

- Successfully met primary endpoint for 2L HER2 exon 20 insertion mutations
 - ORR was 27.8% in 2L HER2 cohort
 - Higher response rates (38.7%) seen in heavily pre-treated HER2 cohort (≥ 3 lines of therapy)
- Clinical activity seen in previously-treated NSCLC patients with EGFR and HER2 exon 20 insertions across common mutational profile
 - DCR of 68.7% and 70% respectively
- Clinically meaningful responses (28.6%) observed in 14 HER2 patients with brain metastases at entry with no progression in brain lesion (CNS specific DCR of 100%)
 - Activity in CNS metastatic disease for both EGFR and HER2 cohorts
- Safety profile similar to second generation TKI's

VISION: Cohort A baseline characteristics

VISION comprises a large population of elderly patients with *MET* exon 14 skipping NSCLC

- VISION is a single-arm, Phase II trial of tepotinib in patients with *MET*-altered NSCLC (NCT02864992)¹
 - Cohort A enrolled patients with *MET* exon 14 skipping NSCLC
- Patients were mostly elderly, half were male, half had smoking history, and most had adenocarcinoma
- Baseline characteristics were similar in the safety population, comprising all patients with *MET* exon 14 skipping NSCLC who received at least one dose of tepotinib across Cohorts A and C (N=255)

Baseline characteristics	Treatment-naïve (n=69)	Previously treated (n=83)	Overall (N=152)
Median age, years (range)	74.0 (56–94)	72.6 (41–88)	73.1 (41–94)
Sex, %	Male/Female	52.2/47.8	51.8/48.2
Race,† %	White/Asian	81.2/17.4	62.7/31.3
ECOG PS, %	0/1	36.2/63.8	19.3/80.7
Smoking history,‡ %	Yes/No	62.3/37.7	43.4/47.0
Histology,§ %	Adenocarcinoma/ Squamous	84.1/8.7	88.0/10.8
Brain metastases at baseline,¶ %	14.5	15.7	15.1

Best responses to prior therapies

- Any (n=83)
 - 2 CRs (2.4%)
 - 24 PRs (28.9%)
- Platinum-based CT* (n=74)
 - 2 CRs (2.7%)
 - 19 PRs (25.7%)
- IO + platinum-based CT (n=10)
 - 3 PRs (30.0%)

Additional information on [tepotinib](#). *Prior platinum-based CT for metastatic disease. †Race was unknown or missing in four patients, one patient was Black/African American, and one patient was 'other'. ‡Smoking history was missing in eight patients. §Two patients had adenosquamous histology (one treatment-naïve and one previously treated), three patients had sarcomatoid (all treatment naïve), and one patient had NSCLC-NOS (treatment naïve). ¶Baseline brain metastases identified by IRC or investigator.

CR, complete response; CT, chemotherapy; ECOG PS, Eastern Cooperative Oncology Group performance status; IO, immunotherapy; MET, mesenchymal-epithelial transition factor; NOS, not otherwise specified; NSCLC, non-small cell lung cancer; PR, partial response. 1. Paik PK et al. N Engl J Med. 2020;383(10):931-943.

VISION: Cohort A overall efficacy

Tepotinib demonstrated clinical activity irrespective of therapy line in this elderly patient population

Efficacy according to IRC	Treatment-naïve (n=69)	Previously treated (n=83)	Overall (N=152)
ORR, % (95% CI)	44.9 (32.9, 57.4)	44.6 (33.7, 55.9)	44.7 (36.7, 53.0)
BOR, n (%)			
CR	0	0	0
PR	31 (44.9)	37 (44.6)	68 (44.7)
SD	16 (23.2)	23 (27.7)	39 (25.7)
PD	13 (18.8)	13 (15.7)	26 (17.1)
NE	9 (13.0)	10 (12.0)	19 (12.5)
Median DOR, months (95% CI)	10.8 (6.9, ne)	11.1 (9.5, 18.5)	11.1 (8.4, 18.5)
Median PFS, months (95% CI)	8.5 (6.8, 11.3)	10.9 (8.2, 12.7)	8.9 (8.2, 11.2)

Data cut-off: July 1, 2020.

*Platinum-based CT for metastatic disease; three patients had stage III NSCLC at study entry and are, therefore, not included in this categorization. †One patient received IO as monotherapy and in combination with platinum-based CT and, as such, is included in both subgroups. ‡Patients could have received first-line platinum-based CT followed by second-line single-agent IO, or vice versa.

BOR, best overall response; CI, confidence interval; CR, complete response; CT, chemotherapy; DOR, duration of response; IRC, independent review committee; NE, not evaluable; ne, not estimable; ORR, objective response rate; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease.

Methods and Demographics

Adult phase I trial (NCT02122913)

- Age ≥ 18 years
- Advanced solid tumors

Adult/adolescent phase II basket trial (NAVIGATE, NCT02576431)

- Age ≥ 12 years
- Advanced solid tumors
- TRK fusion cancer

n=1

n=13

14 patients with TRK fusion lung cancer

Patient characteristics	
Median age, range	52 (25–76)
Sex, n (%)	
Male	8 (57)
Female	6 (43)
NTRK fusion, n (%)	
NTRK1	11 (79)
NTRK2	0
NTRK3	3 (21)
CNS metastases at baseline, n (%)	
Yes	7 (50)
No	7 (50)
Number of prior systemic therapies, median (range) [†]	3 (0–5)
Number of prior systemic therapies, n (%)	
0	1 (7)
1	4 (29)
2	2 (14)
≥ 3	7 (50)

[†]Median prior systemic therapies for CNS metastases patients = 1 (range 0–4). The best overall response to prior therapy was PR in two patients, SD in two patients and PD in one patient. Responses were unavailable for two patients. BID, twice daily; CNS, central nervous system; DoR, duration of response; INV, investigator; IRC, independent review committee; NTRK, neurotrophic tyrosine receptor kinase; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; RECIST, response evaluation criteria in solid tumors; SD, stable disease; TRK, tropomyosin receptor kinase.

Dosing

- Larotrectinib, 100 mg BID continuously
- 28-day cycles

Endpoints

- Primary
 - Best ORR per IRC and INV (RECIST v1.1)
- Secondary
 - DoR
 - PFS
 - OS
 - Safety

Data cut-off: July 15, 2019

Best Response to Larotrectinib per IRC[‡]

[†]1 patient was not evaluable. [‡]No data available for 3 patients as no measurable lesions assessed by IRC.

[§]Patient had 100% reduction in CNS lesions. [¶]Patient discontinued at the physician's decision. [¶]Patient discontinued due to protocol deviation.

CI, confidence interval; CNS, central nervous system; CR, complete response; INV, investigator; IRC, independent review committee; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Treatment Duration

- Duration of treatment: 2.1 to 39.6+ months
- Treatment ongoing in 9 (64%) patients at data cut-off, including 3 of 7 patients with CNS metastases
- Median time to response was 1.8 months (range: 1.7-7.3)

TRIDENT-1 Study Design and Early Interim Phase 2 Data as of August 2020

ROS1+ Advanced NSCLC			NTRK+ Advanced Solid Tumors		
EXP-1 ROS1 TKI naïve (n=55)	EXP-2 1 prior ROS1 TKI AND 1 platinum-based chemotherapy (n=60)	EXP-3 2 prior ROS1 TKIs AND No prior chemotherapy (n=40)	EXP-4 1 prior ROS1 TKI AND No prior chemotherapy (n=60)	EXP-5 TRK TKI naïve (n=55)	EXP-6 TRK TKI pretreated (n=40)
ORR 86% (6/7) 95% CI, 42–100	ORR 40% (2/5) 95% CI, 5–85	ORR 40% (2/5) 95% CI, 5–85	ORR 67% (4/6) 95% CI, 22–96	Not Reported	ORR 50% (3/6) 95% CI, 12–88

Today's presentation will focus on UPDATED Phase 2 EXP-1 data (N=15) utilizing a data cutoff of 31 December 2020:
 - Median age 58 (range 30-76); ECOG PS 1 = 60%; Prior Chemotherapy Use = 20%

Previously reported Phase 1 ROS1+ TKI-Naïve results (N=11) based on data cutoff by BICR of 22 July 2019:

- ORR: 91% (10/11) (95% CI: 59 – 100)
 - ORR 86% (6/7) at or above the Phase 2 recommended dose
- Median DOR (95% CI): 23.1 months (5.6 - NR)
- Median PFS (95% CI): 24.6 months (7.2 - NR)

Phase 2 data cut-off date December 31, 2020, responses confirmed by investigator assessment. Phase 1 data cut-off date July 22, 2019 responses confirmed by BICR, and December 31, 2020 for duration of treatment. Phase 1 data includes only patients treated at or above repotrectinib RP2D.
 BICR, blinded independent central review; CI, confidence interval; DOR, duration of response; EXP, expansion; NR, not reached; NSCLC, non-small cell lung cancer; ORR, overall response rate; PFS, progression-free survival; RP2D, recommended Phase 2 dose; TKI, tyrosine kinase inhibitor

Byoung Chul Cho, Yonsei Cancer Center, Republic of Korea

IASLC | 2020 World Conference
on Lung Cancer Singapore

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Clinical Activity in *ROS1*+ TKI Naïve Advanced NSCLC Patients

Overall Response (N=22)

	Phase 2 N=15	Phase 1+2 N=22
Confirmed ORR, % (95% CI)	93% (68–100)	91% (71–99)

N=22 patients with baseline and at least two post baseline scans

- N=15 Phase 2 patients
- N=7 Phase 1 patients treated at or above the Phase 2 recommended dose

As of 31 December 2020, the 16th patient in Phase 2 has an unconfirmed PR and is on treatment awaiting a second post-baseline confirmatory scan.

cORR, confirmed overall response rate; ORR, overall response rate.

Byoung Chul Cho, Yonsei Cancer Center, Republic of Korea

IASLC | 2020 World Conference
on Lung Cancer Singapore

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT